Abstract

BackgroundThe goal of the current investigation was to formulate, evaluate co-crystal, and further design of solid unit dosage form of antihyperlipidemic BCS class II drug fenofibrate (FNO). Co-crystals composed of a structurally homogeneous crystalline material that contains two or more components in a definite stoichiometric amount helps in increasing yield, the capability to regulator polymorph fabrication, enhanced invention crystallinity. Ball milling method is used for co-crystal formulation, optimized via 32 full factorial design and characterized by saturation solubility, particle size analysis, Fourier transform infrared spectroscopy (FT-IR) study analysis, powder X-ray diffraction (PXRD) study analysis, surface morphology by scanning electron microscopy (SEM) study, flow properties, and ex vivo intestinal permeation study via non-everted rat intestinal sac model. Furthermore, optimized batch compressed into tablets is evaluated for disintegration time, hardness, friability, in vitro drug release study and stability study.ResultsIt demonstrated that co-crystal formulation FNOCC7 shows higher saturation solubility 0.3874 ± 2.82 g/ml with less particle size 221.231 ± 0.456 nm, FT-IR spectra confirmed significant structural alterations in the formulation indicating the hetero-molecular interaction, the presence of hydrogen bonding had occurred in the co-crystals, PXRD spectra of formulation determined by the increase in the crystalline nature. FNO co-crystals show flux (F) and permeability coefficient (Papp) 0.322 ± 0.068 μg/min, 5.38 ± 0.093 cm/min respectively increased compared to the pure drug makes in an enhancement of solubility as well as the bioavailability of BCS class II drug.ConclusionsThe solubility and dissolution percentage of FNO can be improved by the utilization of Co-crystal of FNO with PEG 4000. The solubilization impact of PEG 4000 might be contributed because of the decrease of molecule conglomeration of the drug presence of crystallinity, expanded wettability, and dispersibility; pharmaceutical co-crystals speak to a beneficial class of crystal form with regard of pharmaceuticals.

Highlights

  • The goal of the current investigation was to formulate, evaluate co-crystal, and further design of solid unit dosage form of antihyperlipidemic Bio-pharmaceutics classification system (BCS) class II drug fenofibrate (FNO)

  • Magnesium stearate, polyvinyl pyrrolidone (PVP), and isopropyl alcohol was obtained from Sigma Aldrich (Kolkata, India) and the rest of the chemicals that were used of analytical grade

  • In saturation solubility, the negative distinguished impact of X1 and X2 indicates that if the number of balls is reduced together with time, enhancement in saturation solubility is observed. This can be supported by the comminution process of the imparting energy, fracture and cleavage of particles occurring when extreme tensions are functional that yield fragments of size 50–80 make the most the size of the preliminary particle size

Read more

Summary

Introduction

The goal of the current investigation was to formulate, evaluate co-crystal, and further design of solid unit dosage form of antihyperlipidemic BCS class II drug fenofibrate (FNO). Ball milling method is used for co-crystal formulation, optimized via 32 full factorial design and characterized by saturation solubility, particle size analysis, Fourier transform infrared spectroscopy (FT-IR) study analysis, powder X-ray diffraction (PXRD) study analysis, surface morphology by scanning electron microscopy (SEM) study, flow properties, and ex vivo intestinal permeation study via non-everted rat intestinal sac model. Modifications should be demanded in dissolution study of fenofibrate. High dose size is required for poorly water-soluble drugs in demand to attain to reach its plasma concentration at a therapeutic level. In the field of particle engineering, attempts are undertaken to improve solubility, micrometric, and compression properties, and obtaining suitable polymorphs is one of the key factors for enhancement of the dissolution rate of poorly soluble drugs.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call