Abstract

The characteristic curves of a Hamilton-Jacobi equation can be seen as action-minimizing trajectories of fluid particles. For non-smooth 'viscosity' solutions, which give rise to discontinuous velocity fields, this description is usually pursued only up to the moment when trajectories hit a shock and cease to minimize the Lagrangian action. In this paper we show that, for any convex Hamiltonian, there exists a uniquely defined canonical global non-smooth coalescing flow that extends particle trajectories and determines the dynamics inside shocks. We also provide a variational description of the corresponding effective velocity field inside shocks, and discuss the relation to the 'dissipative anomaly' in the limit of vanishing viscosity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call