Abstract
In this paper, we present the results of our investigation relating particle dynamics and non-commutativity of space–time by using Dirac's constraint analysis. In this study, we re-parameterise the time t=t(τ) along with x=x(τ) and treat both as configuration space variables. Here, τ is a monotonic increasing parameter and the system evolves with this parameter. After constraint analysis, we find the deformed Dirac brackets similar to the κ-deformed space–time and also, get the deformed Hamilton's equations of motion. Moreover, we study the effect of non-commutativity on the generators of Galilean group and Poincare group and find undeformed form of the algebra. Also, we work on the extended space analysis in the Lagrangian formalism. We find the primary as well as the secondary constraints. Strikingly on calculating the Dirac brackets among the phase space variables, we obtain the classical version of κ-Minkowski algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.