Abstract
The acceleration of charged particles in a site of magnetic reconnection is analysed by detailed numerical simulations. Single or multiple encounters of the particles with Harris-type reconnecting current sheets (RCSs) are modelled as an overall stochastic process taking place within an active region. RCS physical parameters are selected in a parameter space relevant to solar flares. Initially, the charged particles form a thermal (Maxwellian) distribution corresponding to coronal temperature � 2 × 10 6 K. Our main goal is to investigate how the acceleration process changes the shape of the particles’ kinetic energy distribution. The evolution of the kinetic energy distribution, calculated numerically after one encounter of the particles with a single RCS, is found to be in good agreement with our previously published analytical formulae. In the case of consecutive encounters, we find that the kinetic distribution tends to converge to a practically invariant form after a relatively small number of encounters. We construct a discrete stochastic process that reproduces the numerical distributions and we provide a theoretical interpretation of the asymptotic convergence of the energy distribution. We finally compute the theoretical X-ray spectra that would be emitted by the simulated particles in a thick target model of radiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.