Abstract

Dispersion of solid particles in forced isotropic low-Mach-number turbulent flows s studied. The carrier phase is considered in the Eulerian frame and is simulated by direct numerical simulation (DNS) whereas the particles are treated in a Lagrangian context. The formulation includes the effects of the two-way coupling on the carrier phase. The results verify previous observations for velocity field in similar studies in incompressible flows while providing new insights into the modifications of the thermodynamic fields. It is found that the ratio of the root mean square (rms) Mach number to the mean Mach number is nearly constant (∼0.41) for all of the cases. A peak value is observed in the variation of the particle velocity variance (normalized with the fluid velocity variance) with the mass loading ratio. The polytropic coefficient decreases linearly by the increase of the mass loading ratio, and nonlinearly by the decrease of the particle time constant. © 1999 Elsevier Science Ltd. All rights reserved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.