Abstract

This paper investigates a hydrodynamic particle separation technique that employs pinching of particles to a narrow microchannel. The particles are subject to a sudden expansion which results in a size-based particle separation transverse to the flow direction. The separation resolution and particle dispersion are measured using epifluorescence microscopy. The resolution and dispersion are predicted using a compact theoretical model. Devices are fabricated using conventional soft lithography of polydimethylsiloxane. The results show that the separation resolution is a function of the microchannel aspect ratio, particle size difference, and the microchannel sidewall roughness. A separation resolution as large as 3.8 is obtained in this work. This work shows that particles with diameters on the order of the sidewall roughness cannot be separated using pinched flow fractionation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.