Abstract

Particle detachment induced by a rotating wheel was investigated theoretically and experimentally. The developed theoretical models were used to reveal how the particle detaches from a wheel surface to the surrounding air. The corresponding experiments were carried out to validate proposed models. Two groups of spherical particles were considered, i.e. silicon dioxide and aluminium oxide particles. Different forces and force moments acting on individual particles were analysed. The criteria for the rolling detachment of particles were considered. The detachment diameters under various conditions were calculated. The results show that the particle detachment was dominated by the removal and resistant forces acting on particles, including the gravity force, adhesion force, hydrodynamic force and centrifugal force. Different relevant parameters can affect particle detachment through these forces, including surface roughness, wheel speed, particle size and properties. A higher wheel speed, larger particle sizes and higher wheel surface roughness were shown to have a conducive influence on particle detachment. The resistant and removal force moments could be affected by the particle properties at the same time; therefore, the detachment diameters of the aluminium oxide particles are similar to those of silicon dioxide. This study can contribute towards the estimation of particle emissions from vehicles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call