Abstract

This study investigates electrostatic fields surrounding the human head and particle deposition onto facial skin and eyes caused by the combined effect of electrostatic and wind fields. The electrostatic fields are calculated by a three-dimensional numerical model calculating the field strength between a field source and a human head. The deposition velocity can be viewed as determined by the sum of two contributions: that of an electrostatic field and that of a wind field. Deposition velocities are calculated by a semiempirical particle deposition model that considers particle transport from the free stream to the human face. The particle deposition model uses the electrostatic field model results as input parameters and is applied to the forehead and eyes of two facial shapes for two different turbulence conditions and aerosol charge distributions. The results of different practical working conditions, under which the potential difference between head (person) and source ranges from 5.6 to 15.0 kV, indicates that the presence of electrostatic fields always increases particle deposition for industrial aerosols. For aged aerosols an effect is only present for submicron particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call