Abstract

Particle deposition resulting from uniform external forces and Brownian motion is modeled in a parallel-plate reactor geometry characteristic of a wide range of semiconductor process tools: uniform, isothermal, downward flow exiting a perforated-plate showerhead separated by a small gap from a parallel, circular wafer. Particle transport is modeled using a Eulerian approach neglecting particle inertia and interception. Particles are assumed to originate in a planar trap located between the plates, such as would result for particles released from a plasma-induced particle trap after plasma extinction. Flow between infinite parallel plates is described by an analytic quasi-one-dimensional creeping flow approximation, where the showerhead is treated as a porous plate. An analytic, integral expression for particle collection efficiency (fraction of particles that end up on the wafer) is derived as a function of four dimensionless parameters: the flow Reynolds number, a dimensionless trap height, a dimensionle...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.