Abstract

ABSTRACT In the present work, a novel method was first proposed to realise direct powder forging of high borated stainless steel on Gleeble through hot compression tests performed at 1150°C and 0.01–10 s−1 with strains of 32% and 50%. Particle deformation and microstructural evolution of high borated stainless steel powder during direct forging were investigated. Backscattered electron (BSE) and electron backscatter diffraction (EBSD) were employed for microstructure examination. Microstructure reveals that large deformation zones were easily distinguished by boride and grain features. Enhanced boride coarsening in the contact area of powders was attributed to the combined action of strain, dislocation, stress and temperature rising. Strain rates had no obvious influence on densification but significantly affected the deformation of particles. Furthermore, the mechanism of particle deformation enhanced by a higher strain rate was discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.