Abstract

A canonical particle definition via the diagonalisation of the Hamiltonian for a quantum field theory in specific curved space-times is presented. Within the provided approach radial ingoing or outgoing Minkowski particles do not exist. An application of this formalism to the Rindler metric recovers the well-known Unruh effect. For the situation of a black hole the Hamiltonian splits up into two independent parts accounting for the interior and the exterior domain, respectively. It turns out that a reasonable particle definition may be accomplished for the outside region only. The Hamiltonian of the field inside the black hole is unbounded from above and below and hence possesses no ground state. The corresponding equation of motion displays a linear global instability. Possible consequences of this instability are discussed and its relations to the sonic analogues of black holes are addressed. PACS-numbers: 04.70.Dy, 04.62.+v, 10.10.Ef, 03.65.Db.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.