Abstract

The performance of particle coating is essentially determined by the morphology and uniformity of coating shells, which significantly depend on particle circulation. In this study, the geometry of a Wurster fluidized bed is changed by regulating particle circulation port size and nozzle position, and their effects on particle circulation and coating properties are investigated by combining coating experiments and CFD – Discrete Element Model (DEM). By increasing the circulation port size, the particle circulation rate first increases then decreases slightly, accordingly, the uniformity of particle circulation increases then decreases, while the shell porosity decreases. By increasing the nozzle height, the particle circulation rate decreases slightly, accordingly, the uniformity of particle circulation increases then decreases, while the shell porosity decreases. At extremes with a too small circulation port size or too high nozzle position, particle residence and cycle time distribution are broader, and an obvious nonuniformity of particle growth is observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call