Abstract

Low adhesion between a train’s wheel and the rail can cause performance and safety issues, costing the UK rail industry ~£345 m/annum. Sand is applied to the wheel/rail interface to increase traction when low adhesion conditions are present. In order to improve performance, an understanding of how particles are entrained into and act within the interface is needed. This paper outlines a particle characterisation framework and applies it to sands used in the rail industry: Leighton Buzzard (LB), Central European (CE), and Derbyshire Youlgreave (DY) sand. The largest difference found in this framework was between the sand’s particle size, LB being largest, then CE, then DY. A high pressure torsion rig measured traction when the sands were applied to dry, wet, and leaf extract contaminated conditions, the latter two representing low adhesion conditions. All sands had no impact on wheel/rail adhesion in dry conditions; in low adhesion conditions DY had little influence, whereas LB and CE were found to increase traction. Particles in dry conditions had no effect on test specimen surface roughness, whereas roughness increased when sand was applied in low adhesion conditions. The developed characterisation framework provides a platform for assessing prospective adhesion enhancing particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.