Abstract
A theory of capture of magnetic particle carried by laminar flow of viscous non-Newtonian (power law) fluid in axially ordered filters is presented. The velocity profile of the fluid flow is determined by the Kuwabara-Happel cell model. For the trajectory of the particle, the capture area and the filter performance simple analytical expressions are obtained. These expressions are valid for particle capture processes from both Newtonian and non-Newtonian fluids. For this reason the obtained theoretical results make it possible to widen the application of high-gradient magnetic filtration (HGMF) to other industrial areas. For Newtonian fluids the theoretical results are shown to be in good agreement with the experimental ones reported in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.