Abstract

Fine particles in the liquid feed to packed-bed reactors can be trapped in the catalyst bed, which eventually leads to excessive pressure drop. The fine particles can include coke, corrosion products, clays, and other minerals. The catalyst bed functions as a granular filter to remove particles much smaller than the size of the pores between the catalyst pellets. The efficiency for trapping the particles in the packed bed depends on the flow fields and the attractive forces between the packing and the fine particles. In order to understand the capture of fine particles from nonaqueous media, we studied a model system of carbon black in kerosene. Columns packed with glass beads and a catalyst were operated over a range of flow velocities to Reynolds numbers from 0.1 to 2.3, on the basis of the diameter of the packing in the bed. Flow was in the upward and in the downward direction. The filter coefficient and efficiency were sensitive to liquid velocity. Trapping was slightly more efficient with downward fl...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.