Abstract

The dynamics of the three-phase contact line during particle-bubble interactions determine the stability of particle-bubble aggregates in flotation. The interaction of particles and sessile gas bubbles can be studied by colloidal probe atomic force microscopy (CP-AFM). This paper demonstrates a method to obtain the contact angle, the position of the three-phase contact line on the particle, and the bubble profile by utilizing the full information contained in AFM force-distance curves, i.e., force and CP-position information as well as the work done to move the three-phase contact line on the CP-particle. The proposed method does not require any assumption of a constant contact angle or a constant opening angle. This is achieved by the combined solution of the particle force balance and an expression for the work required to move the three-phase contact line over the colloid probe. The applicability to AFM force-distance measurements was demonstrated for the interaction of a hydrophobic SiO2 or a hydrophobic Al2O3 colloidal probe particle with sessile gas bubbles having radii between 45 and 80 μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.