Abstract

To use the manifold possibilities that arc spraying offers to deposit wear resistance layers, knowledge of the particle formation and their behavior is necessary. This work is focused on studying the particle properties during arc spraying with cored wires. Different cored wires under various spraying parameters are investigated by means of a high speed camera. Particle properties in-flight, such as velocity and temperature, are determined. Correlation between particle behavior and particle characteristics at different spraying conditions is established. At the same time, the particle-laden gas flow is simulated numerically and the computed solutions are used to illustrate the utility of the proposed CFD model and compared with experimental results. The employed mathematical model represents a system of macroscopic conservation laws for the continuous gas phase and for the gas-solid mixture. This approach formulation makes it possible to circumvent the numerical difficulties associated with the implementation of a (potentially ill-posed) two-fluid model. The discretization in space is performed using a high-resolution finite element scheme based on algebraic flux correction in terms of local characteristic variables. The artificial diffusion operator is constructed on the discrete level and fitted to the local solution behavior using a multidimensional flux limiter of TVD type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.