Abstract

Using an extensive database of in situ observations we present a model that estimates the particle backscattering coefficient as a function of the total chlorophyll concentration in the open-ocean (Case-1 waters). The parameters of the model include a constant background component and the chlorophyll-specific backscattering coefficients associated with small (<20 μm) and large (>20 μm) phytoplankton. The new model performed with similar accuracy when compared with a traditional power-law function, with the additional benefit of providing information on the role of phytoplankton size. The observed spectral-dependency (γ) of model parameters was consistent with past observations, such that γ associated with the small phytoplankton population was higher than that of large phytoplankton. Furthermore, γ associated with the constant background component suggests this component is likely attributed to submicron particles. We envisage that the model would be useful for improving Case-1 ocean-colour models, assimilating light into multi-phytoplankton ecosystem models and improving estimates of phytoplankton size structure from remote sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.