Abstract

Observations suggest that particle acceleration in solar flares occurs in the magnetic reconnection region above the flare loops. Theoretical models for particle acceleration by the reconnection electric field, however, employ heuristic configurations for electric and magnetic fields in model current sheets, which are not solutions to the MHD reconnection problem. In the present study, particle acceleration is discussed within the context of a self-consistent MHD reconnection solution. This has the advantage of allowing poorly constrained local parameters in the current sheet region to be expressed in terms of the boundary conditions and electric resistivity of the global solution. The resulting acceleration model leads to energy gains that are consistent with those for high-energy particles in solar flares. The overall self-consistency of the approach is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call