Abstract

Context. Particles accelerated in solar flares draw their energy from the magnetic field. The dissipative scale of the magnetic energy in the solar corona implies that the magnetic energy is transmitted to the particles through a large number of dissipative regions (DR). Aims. To finally compute the particle energy distribution, we present an approach to linking the magnetic energy release to the acceleration process that occurs in each DR . Methods. Although not directly observed, the magnetic energy release process is assumed to evolve in an SOC state that leads to the power-law behaviour of the probability distribution function for the energy released in each DR. We consider that most of the accelerated particles leave the acceleration region after one interaction, but we introduce a distribution of the particle acceleration lengths inside each acceleration region. Results. We calculate the kinetic energy distribution of the accelerated particles. Our model allows us to identify the physical process that determines each part of the particle energy distribution. Conclusions. As a conclusion, we discuss the limitations of the approach presented in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call