Abstract

The sharp magnetic discontinuities that naturally appear in solar magnetic flux tubes driven by turbulent photospheric motions are associated with intense currents. Parker proposed that these currents can become unstable to a variety of microscopic processes, with the net result of dramatically enhanced resistivity and heating (nano-flares). The electric fields associated with such "hot spots" are also expected to enhance particle acceleration. We test this hypothesis by exact relativistic orbit simulations in strong random phase magnetohydrodynamic turbulence that is forming localized super-Dreicer Ohm electric fields (102 ≤ EΩ/ED ≤ 105) occurring in 2%-15% of the volume. It is found that these fields indeed yield a large amplification of acceleration of electrons and ions and can effectively overcome the injection problem. We suggest in this article that nanoflare heating will be associated with sporadic particle acceleration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.