Abstract

The radio galaxy M87 has recently been found to be a rapidly variable TeV emitting source. We analyze the implications of the observed TeV characteristics and show that it proves challenging to account for them within conventional acceleration and emission models. We discuss a new pulsar-type scenario for the origin of variable, very high energy (VHE) emission close to the central supermassive black hole and show that magneto-centrifugally accelerated electrons could efficiently Compton upscatter sub-mm ADAF disk photons to the TeV regime, leading to VHE characteristics close to those observed. This suggests, conversely, that VHE observations of highly under-luminous AGNs could provide an important diagnostic tool for probing the conditions prevalent in the inner accretion disk of these sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.