Abstract

Elbows are widely used in various industrial fields and are important for industrial applications. In this study, Eulerian coupling method was used to address the fluid-particle, and particle-particle interactions in a gas-solid two-phase flow while considering the effects of lifting angle, airflow velocity, and solid mass flow rate. The Hertz-Mindlin contact model and empirical Erosion/Corrosion Research Center erosion model were used to predict erosion in a lifting elbow, and the erosion ratio was used for validation with the experimental results. Experimental results indicated that the established model herein is accurate with different airflow velocities and lifting angles. The orthogonal design method was applied to the simulation scheme design, and range and variance analyses were used for the analysis of the results. Results indicated that the solid mass flow rate most affected elbow erosion comparing with lifting angles and airflow velocities. Additionally, the effect of the elbow lifting angle on the erosion mechanism was considered, and results indicated that the maximum erosion region is independent of the airflow velocity, lifting angle, and solid mass flow rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call