Abstract

<p>Evidence-based decision making is seen as the key to sustainable water resource and catchment management. However, a major obstacle for evidence generation is the limited amount of data available from in-situ hydrometeorological monitoring. Monitoring is in decline globally, and this problem is particularly acute in high-elevation environments and in the tropics. Nevertheless, this situation also puts these environments in a promising position to study the potential of multi-source, polycentric generated information to tackle data scarcity.</p><p>Established in 2009, a bottom-up partnership of academic and non-governmental institutions pioneered participatory hydrological monitoring in the tropical Andes. Participatory approaches to environmental monitoring are becoming increasingly popular and are being promoted as a potential pathway to address long-standing data gaps. The partnership, known as the Regional Initiative for Hydrological Monitoring of Andean Ecosystems (iMHEA from its Spanish abbreviation) has instrumented a network of more than 30 headwater research catchments (< 20 km2) covering four major biomes (páramo, jalca, puna, and forest) in nine locations of the tropical Andes. Precipitation and streamflow are monitored at high frequency with the involvement of local communities, governments, and research institutions. The network is designed to characterize the impacts of changes in land use and watershed interventions on catchment hydrological response and has started delivering fundamental information to guide processes of decision making more effectively and influencing policy-making on water resources at local and national scales.</p><p>Participatory water resources monitoring can be seen a science-policy tool. Here we present the drivers and context of the process that led to the creation of iMHEA, currently one of the largest initiatives of grassroots and participatory environmental monitoring in the world, and the main challenges that lie ahead. Observational data from experimental catchments have an essential value for hydrology and water resources management that increases with time. The long-term sustainability in the monitoring will allow a deeper understanding of current uncertainties, including seasonality, natural variability, environmental changes, and extreme events such as drought and flooding.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.