Abstract

Building a student performance prediction model that is both practical and understandable for users is a challenging task fraught with confounding factors to collect and measure. Most current prediction models are difficult for teachers to interpret. This poses significant problems for model use (e.g. personalizing education and intervention) as well as model evaluation. In this paper, we synthesize learning analytics approaches, educational data mining (EDM) and HCI theory to explore the development of more usable prediction models and prediction model representations using data from a collaborative geometry problem solving environment: Virtual Math Teams with Geogebra (VMTwG). First, based on theory proposed by Hrastinski (2009) establishing online learning as online participation, we operationalized activity theory to holistically quantify students’ participation in the CSCL (Computer-supported Collaborative Learning) course. As a result, 6 variables, Subject, Rules, Tools, Division of Labor, Community, and Object, are constructed. This analysis of variables prior to the application of a model distinguishes our approach from prior approaches (feature selection, Ad-hoc guesswork etc.). The approach described diminishes data dimensionality and systematically contextualizes data in a semantic background. Secondly, an advanced modeling technique, Genetic Programming (GP), underlies the developed prediction model. We demonstrate how connecting the structure of VMTwG trace data to a theoretical framework and processing that data using the GP algorithmic approach outperforms traditional models in prediction rate and interpretability. Theoretical and practical implications are then discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.