Abstract

We propose a novel participation recommendation approach for crowdsourcing contests including probabilistic modeling of contest participation and winner determination. Our method estimates the winning and participation probability of each worker and offers ranked lists of recommended contests. Since there is only one winner in most contests, standard recommendation techniques fail to estimate the accurate winning probability using only the extremely sparse winning information of completed contests. Our solution is to utilize contest participation information and features of workers and contests as auxiliary information. We use the concept of a transfer learning method for matrices and a feature-based matrix factorization method. Experiments conducted using real crowdsourcing contest datasets show that the use of auxiliary information is crucial for improving the performance of contest recommendation, and also reveal several important common skills.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.