Abstract
The influence of repair and replication on the frequency of spontaneous chromosome aberrations and of those induced by gamma-irradiation is reported.Using the technique of labelling DNA with radioactive (3)H-thymidine and measuring the radioactivity of DNA isolated from embryos, the time of initiation and the duration of DNA synthesis in barley seeds was studied after the soaking of the seeds had begun. The average duration of each phase of the first DNA synthesis cycle in soaking barley seeds was found to be as follows: pre-DNA synthesis stage, 10-11 hrs; DNA synthesis stage, 8 hrs. After gamma-irradiation, the intensity of DNA synthesis decreased and the beginning of DNA synthesis was delayed.It was found that the inhibition of repair by caffeine led to an increase in the frequency of both spontaneous and induced chromosome aberrations. Caffeine enhanced several times the frequency of chromosome and chromatid aberrations at the time of the maximal activity of repair enzymes. During DNA replication, caffeine had a lower effect on the realization of premutational lesions.An inhibitor of DNA replication - hydroxyurea - had no influence on the frequency of spontaneous chromosome aberrations during the replication period, whereas after gamma-irradiation, hydroxyurea enhanced the frequency of aberrations mainly at the stage of DNA replication.The relatively small mutagenic action of both agents (caffeine and hydroxyurea) was observed during all stages of the cell cycle of germinating barley seeds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.