Abstract

The heat-pretreated amoebae (hyalospheres) are well suited cell models to study several manifestations of endocytosis: invagination of initial funnels, formation of pinocytotic channels, their activity and disintegration, production of microand macroendosomes directly from the surface membrane. All these phenomena are rhythmically reproduced (with periods ranging from 9 to 27 s) at the same active spots on the cell surface and accompanied by pulsation of the adjacent peripheral cytoplasmic layers. Successive portions of the contractile cortical network are serially detached from the plasma membrane and retracted inwards (on average 1 detachment per 15 s). They are suggested to be responsible for the traction component of endocytotic movements, i.e., for pulling the initial invagination funnels, elongation of channels, and inward transport of macroendosomes which are embedded in them. On the other hand, retraction of the cortical network squeezes the hyaloplasm outwards and thus the pressure component of endocytosic is produced. This results in cell surface expansion around the orifice of endocytotic channels or formation of macroendosomes by constriction at the mouth of large surface invaginations. Moreover, the retracting cortical network produces various radial transhyaline strands which seem to play a, not fully understood, role in membrane invagination and inward transport of microendosomes, and to accompany cytoplasmic pulsation around channels. The contractile network lining the walls of the channels may be detected in vivo, when some old channels are destroyed and their membrane dissociates from the cytoskeletal sleeve. The central role of the rhythmic detachment of the contractile network from the plasma membrane is common to the locomotory and endocytotic movements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.