Abstract

We studied the mechanisms by which photosynthetically active radiation (PAR) and ultraviolet (UV-A and UV-B) radiation damage Escherichia coli suspended in water. The roles played by oxygen and exogenous and endogenous sensitizers were analyzed by monitoring changes in the physiological state of irradiated cells. Impairment of the cellular functions was more severe in the case of UV radiations. Radiation caused cellular damage in the absence of oxygen. PAR, UV-A, and UV-B radiation induced photobiological and photodynamic reactions mediated by endogenous sensitizers, which significantly shortened the T90 (time needed to reduce a cellular parameter by 90%) based on the growth ability of the cells. In addition, when exogenous sensitizers were present, the photodynamic reactions also had a negative effect on the operation of the electron transport chains. The presence of oxygen might enhance photoinactivation, affecting both the growth ability and the electron transport chains. Endogenous sensitizers were responsible for the noxious action of oxygen. The presence of dissolved organic material played a protective role against the oxygen by absorbing the incident radiation, thereby reducing the energy that reached the endogenous sensitizers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.