Abstract

In real-world applications, it is common that only a portion of data is aligned across views due to spatial, temporal, or spatiotemporal asynchronism, thus leading to the so-called Partially View-aligned Problem (PVP). To solve such a less-touched problem without the help of labels, we propose simultaneously learning representation and aligning data using a noise-robust contrastive loss. In brief, for each sample from one view, our method aims to identify its within-category counterparts from other views, and thus the cross-view correspondence could be established. As the contrastive learning needs data pairs as input, we construct positive pairs using the known correspondences and negative pairs using random sampling. To alleviate or even eliminate the influence of the false negatives caused by random sampling, we propose a noise-robust contrastive loss that could adaptively prevent the false negatives from dominating the network optimization. To the best of our knowledge, this could be the first successful attempt of enabling contrastive learning robust to noisy labels. In fact, this work might remarkably enrich the learning paradigm with noisy labels. More specifically, the traditional noisy labels are defined as incorrect annotations for the supervised tasks such as classification. In contrast, this work proposes that the view correspondence might be false, which is remarkably different from the widely-accepted definition of noisy label. Extensive experiments show the promising performance of our method comparing with 10 state-of-the-art multi-view approaches in the clustering and classification tasks. The code will be publicly released at https://pengxi.me.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.