Abstract
A switched Ethernet network needs a worst-case delay analysis to prove that real-time applications can be correctly implemented on it. Existing approaches for upper bounding end-to-end delay assume that there is either no-synchronization or a global synchronization of flows which needs a global clock. Conversely, flows emitted by the same end-system can be easily synchronized using the existing local clock. This paper explains how the partial synchronization of periodic flows can be integrated in the worst-case delay analysis provided by Network Calculus approach. End-to-end delays computed on switched Ethernet configurations show that the proposed method clearly reduces the upper bounds of end-to-end delay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.