Abstract

The accidental Dirac cone of a photonic crystal allows the realization of a low loss dielectric metamaterial with simultaneous near-zero effective permittivity and permeability. The resulting zero refractive index allowed applications that require unique spatial coherency. While most thermal light sources were considered highly incoherent, structurally engineered thermal emitters have achieved relatively high spatial coherency. Here, we propose an epsilon-and-mu-near-zero metamaterial as a spatial coherency converter for thermal emissions, and experimentally demonstrate surface-normal directional emissions with an angular width of 20 degrees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.