Abstract

The radiation (reactive or Robin) boundary condition for the diffusion equation is widely used in chemical and biological applications to express reactive boundaries. The underlying trajectories of the diffusing particles are believed to be partially absorbed and partially reflected at the reactive boundary; however, the relation between the reaction constant in the Robin boundary condition and the reflection probability is not well defined. In this paper we define the partially reflected process as a limit of the Markovian jump process generated by the Euler scheme for the underlying Ito dynamics with partial boundary reflection. Trajectories that cross the boundary are terminated with probability $P\sqrt{\Delta t}$ and otherwise are reflected in a normal or oblique direction. We use boundary layer analysis of the corresponding master equation to resolve the nonuniform convergence of the probability density function of the numerical scheme to the solution of the Fokker–Planck equation in a half-space, wi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.