Abstract

In this study we present for the first time tetrahedral amorphous carbon (ta-C)—a partially reduced graphene oxide (PRGO) hybrid electrode nanomaterial platform for electrochemical sensing of dopamine (DA). Graphene oxide was synthesized with the modified Hummer’s method. Before modification of ta-C by drop casting, partial reduction of the GO was carried out to improve electrochemical properties and adhesion to the ta-C thin film. A facile nitric acid treatment that slightly reoxidized the surface and modified the surface chemistry was subsequently performed to further improve the electrochemical properties of the electrodes. The largest relative increase was seen in carboxyl groups. The HNO3 treatment increased the sensitivity toward DA and AA and resulted in a cathodic shift in the oxidation of AA. The fabricated hybrid electrodes were characterized with scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.