Abstract

GaN1−xAsx alloys have been successfully grown on (100) GaAs substrates over a wide composition range (0.15 < x < 0.98) by plasma-assisted molecular beam epitaxy. In the middle composition range, the weak and broad (111) diffraction peaks are observed in the X-ray diffraction patterns. These diffraction peaks most likely come from small crystalline grains within the amorphous matrix and are unlike the entirely amorphous GaNAs alloys grown on sapphire and Pyrex glass. A transmission electron microscopy micrograph of the GaN0.50As0.50 alloy also shows a weak periodic structure consisting of small polycrystalline grains. To study the band gap and the As-affected spin–orbit band to conduction-band minimum transition, photomodulated reflectance is utilized. The band gap energies range from 0.78 to 2.15 eV (3.4 eV for end-point compounds GaN). Finally, the original and modified band anticrossing (BAC) models for GaNAs alloys were thoroughly verified over the entire composition range. Remarkably, the band gap energies of the partially polycrystalline GaNAs alloys agree well with those obtained using the original BAC model in the middle composition range because the model has been developed for crystalline materials. These results improve the growth of highly mismatched GaNAs alloys with different substrates and should expedite studies of high-efficiency multijunction solar cells fabricated using such a single ternary alloy system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.