Abstract

This paper reports a simple technique to synthesize elasticity tunable hybrid hydrogels using photocleavable (N-hydroxysuccinimide terminated photocleavable tetra-arm poly(ethylene glycol); NHS-PC-4armPEG) and non-photocleavable (N-hydroxysuccinimide terminated tetra-arm poly(ethylene glycol); NHS-4armPEG) activated-ester type crosslinkers. Partially photodegradable hybrid hydrogels were synthesized by reacting the crosslinker mixture with amino-terminated tetra-arm poly(ethylene glycol) (amino-4armPEG). The photocleavable crosslinks are cleaved by irradiating light while the non-photocleavable crosslinks remain intact, resulting in decreased elasticity. We demonstrate that hydrogel elasticity can be controlled by adjusting the ratio of photocleavable NHS-PC-4armPEG and non-photocleavable NHS-4armPEG, and by varying the light exposure energy. We also show how micropatterned elasticity can be obtained in the hydrogels by irradiating with micropatterned light. These techniques could provide a novel platform to tailor the elasticity of hydrogels with microscale precision for biological studies in the near future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.