Abstract
Partially occluded object recognition is considered as one of the most difficult problems in machine vision; it has significant importance in industrial environment. In this paper, a 2-D object recognition algorithm applicable for both stand-alone and partially occluded objects is presented. The main contributions are the development of a scale and partial occlusion invariant boundary partition algorithm and a multi-resolution feature extraction algorithm using wavelet. We also implemented a hierarchical matching strategy for feature matching to reduce computational load, but with higher matching accuracy. Experiment results show that the proposed recognition algorithm is robust to similarity transformation and partial occlusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Applications in Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.