Abstract
In this paper, we consider a partially linear transformation model for data subject to length-biasedness and right-censoring which frequently arise simultaneously in biometrics and other fields. The partially linear transformation model can account for nonlinear covariate effects in addition to linear effects on survival time, and thus reconciles a major disadvantage of the popular semiparamnetric linear transformation model. We adopt local linear fitting technique and develop an unbiased global and local estimating equations approach for the estimation of unknown covariate effects. We provide an asymptotic justification for the proposed procedure, and develop an iterative computational algorithm for its practical implementation, and a bootstrap resampling procedure for estimating the standard errors of the estimator. A simulation study shows that the proposed method performs well in finite samples, and the proposed estimator is applied to analyse the Oscar data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.