Abstract
We extend the results of [11] on embedded CR manifolds of CR dimension and codimension two to abstract partially integrable almost CR manifolds. We prove that points on such manifolds fall into three different classes, two of which (the hyperbolic and the elliptic points) always make up open sets. We prove that manifolds consisting entirely of hyperbolic (respectively elliptic) points admit canonical Cartan connections. More precisely, these structures are shown to be exactly the normal parabolic geometries of types $(PSU(2, 1) \times PSU(2, 1), B \times B)$, respectively $(PSL(3, \mathbb{C}), B)$, where $B$ indicates a Borel subgroup. We then show how general tools for parabolic geometries can be used to obtain geometric interpretations of the torsion part of the harmonic components of the curvature of the Cartan connection in the elliptic case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.