Abstract

In this paper, a partially informed transmitter-based optical space shift keying (PIT-OSSK) scheme is proposed, wherein the transmitter only possesses the knowledge of channel gain ordering. This partial information is used to adapt the OSSK constellation and power allocation (PA). The adaptation of OSSK constellation reduces the number of bits in error between two consecutive constellation points, which in turn lowers the overall bit error rate (BER) of the proposed scheme. On the other hand, it is demonstrated by a mathematical analysis that the PA achieves improved diversity order as compared to the conventional OSSK scheme. These modifications make the PIT-OSSK scheme significantly better than the conventional OSSK scheme in terms of the BER under both indoor and outdoor conditions. For a single receiver aperture, accurate closed-form expressions of average BER (ABER) for two and four transmitter aperture-based PIT-OSSK schemes are derived under negative-exponential channel model. Moreover, a very tight approximate closed-form expression of the ABER for an arbitrary number of transmitter apertures is also developed. All the derived expressions are verified via Monte-Carlo simulations. Furthermore, the proposed strategy is extended and examined for an arbitrary number of receiver apertures by the simulation-based results under different channel models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.