Abstract
We study the dynamic version of the distributed all-pairs shortest paths problem. Most of the solutions given in the literature for this problem, either (i) work under the assumption that before dealing with an edge operation, the algorithm for the previous operation has to be terminated, that is, they are not able to update shortest paths concurrently, or (ii) concurrently update shortest paths, but their convergence can be very slow (possibly infinite) due to the looping and counting infinity phenomena. In this paper, we propose partially dynamic algorithms that are able to concurrently update shortest paths. We experimentally analyze the effectiveness and efficiency of our algorithms by comparing them against several implementations of the well-known Bellman–Ford algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.