Abstract

In this paper, we present a novel form of a partially coherent beam characterized by classical entanglement in higher dimensions. We coin the term "twisted vector vortex (TVV) beam" to describe this phenomenon. Similar to multi-partite quantum entangled states in higher dimensions, the partially coherent twisted vector vortex beam possesses distinct properties such as non-uniform polarization, vortex phase, and twist phase. Through experiments, we offer empirical evidence for these three degrees-of-freedom in the light field. The results demonstrate that the state of the light is inseparable in terms of polarization and orbital angular momentum (OAM) modes. Additionally, the twist phase introduces an additional dimension in controlling the vector vortex beam. This research reveals the possibility of new controlling dimensions in classical entanglement through the chirality of coherence within partially coherent light. Consequently, this opens up new avenues for the utilization of partially coherent light in both classical and quantum domains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call