Abstract
Wolf et al. [5-7] introduced the idea of planar secondary sources for the treatment of partially coherent light beams. For the extended full Gaussian waves, only the fully coherent waves in which the wave amplitude remains a constant in time were considered [3]. For the partially coherent beams, the wave period is the same, namely Tw, but the source amplitude is essentially a constant on the time scale of Tw; but on a longer time scale Tf , on the order of nearly thousands of Tw, the amplitude changes in a random manner [8]. A majority of treatments of the partially coherent beams are restricted to the paraxial beams for which the beam waist is large compared to the wavelength. There is a need for the treatment of partially coherent, spatially localized electromagnetic waves extended beyond the paraxial approximation to the full waves governed by Maxwell's equations. An analysis of the partially coherent, spatially localized electromagnetic waves was presented for the fundamental Gaussian wave [9,10]. This is a special case (bt/b 1/4 0) for which the virtual source becomes identical to the actual secondary source in the physical space. In this chapter, the treatment of partially coherent, spatially localized electromagnetic waves is enlarged in scope to include the extended full Gaussian waves for which the virtual source is in the complex space requiring a different formulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.