Abstract

The objective of this study is to evaluate the capability of the partially averaged Navier–Stokes (PANS) method in a moderately high Reynolds number (ReD 1.4×105) turbulent flow past a circular cylinder. PANS is a bridging closure model purported for use at any level of resolution ranging from Reynolds-averaged Navier–Stokes to direct numerical simulations. The closure model is sensitive to the length-scale cut-off via the ratios of unresolved-to-total kinetic energy (fk) and unresolved-to-total dissipation (fε). Several simulations are performed to study the effect of the cut-off length-scale on computed closure model results. The results from various resolutions are compared against experimental data, large eddy simulation, and detached eddy simulation solutions. The quantities examined include coefficient of drag (Cd), Strouhal number (St), and coefficient of pressure distribution (Cp) along with the mean flow statistics and flow structures. Based on the computed results for flow past circular cylinder presented in this paper and analytical attributes of the closure model, it is reasonable to conclude that the PANS bridging method is a theoretically sound and computationally viable variable resolution approach for practical flow computations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.