Abstract

We propose a new approach using wavelet encoding to improve temporal resolution in contrast-enhanced magnetic resonance (MR) imaging. Exploiting the unique property of wavelets localized in space and frequency, we construct an efficient encoding scheme to capture signal changes due to contrast agent uptake, which in general is spatially localized with low- and mid-range frequency components. On the basis of space-frequency analysis, we describe mathematical formulations of our method and discuss its theoretical advantages over Fourier-based phase-encoding methods (the keyhole and reduced-encoding imaging by generalized-series reconstruction [RIGR] techniques). The results obtained in computer simulations and a phantom study demonstrate the feasibility and practical advantages of our approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.