Abstract

Understanding cell functioning at the nanoscale has been hampered in part by the diffraction limited resolution of optical microscopy. We developed an optical microscopic spectroscopy technique, partial wave spectroscopic (PWS) microscopy, that is capable of quantifying statistical properties of cell structure at the nanoscale. Our animal and human studies demonstrated that alterations in the nanoscale cell architecture is one of the earliest events in carcinogenesis and precedes any other known morphological changes at large length scales (i.e. microarchitecture). This appears to be a general event in carcinogenesis, which is supported by our data in five types of cancer: colon, pancreatic, lung, esophageal and ovarian cancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.