Abstract
We study minimal single-task peer prediction mechanisms that have limited knowledge about agents' beliefs. Without knowing what agents' beliefs are or eliciting additional information, it is not possible to design a truthful mechanism in a Bayesian-Nash sense. We go beyond truthfulness and explore equilibrium strategy profiles that are only partially truthful. Using the results from the multi-armed bandit literature, we give a characterization of how inefficient these equilibria are comparing to truthful reporting. We measure the inefficiency of such strategies by counting the number of dishonest reports that any minimal knowledge-bounded mechanism must have. We show that the order of this number is θ(log n), where n is the number of agents, and we provide a peer prediction mechanism that achieves this bound in expectation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.