Abstract

This paper develops the partial trajectory method to align the views from successive fixed cameras that are used for video-based vehicle tracking across multiple camera views. The method is envisioned to serve as a validation tool of whatever alignment has already been performed between the cameras to ensure high fidelity with the actual vehicle movements as they cross the boundaries between cameras. The strength of the method is that it operates on the output of vehicle tracking in each camera rather than secondary features visible in the camera view that are unrelated to the traffic dynamics (e.g., fixed fiducial points). Thereby providing a direct feedback path from the tracking to ensure the quality of the alignment in the context of the traffic dynamics. The method uses vehicle trajectories within successive camera views along a freeway to deduce the presence of an overlap or a gap between those cameras and quantify how large the overlap or gap is. The partial trajectory method can also detect scale factor errors between successive cameras. If any error is detected, ideally one would redo the original camera alignment, if that is not possible, one could use the calculations from the algorithm to post hoc address the existing alignment.This research manually re-extracted the individual vehicle trajectories within each of the seven camera views from the NGSIM I-80 dataset. These trajectories are simply an input to the algorithm. The resulting method transcends the dataset and should be applicable to most methods that seek to extract vehicle trajectories across successive cameras. That said, the results reveal fundamental errors in the NGSIM dataset, including unaccounted for overlap at the boundaries between successive cameras, which leads to systematic speed and acceleration errors at the six camera interfaces. This method also found scale factor errors in the original NGSIM homographies. In response to these findings, we identified a new aerial photo of the NGSIM site and generated new homographies. To evaluate the impact of the partial trajectory method on the actual trajectory data, the manually re-extracted data were projected into the new coordinate system and smoothed. The re-extracted data shows much greater fidelity to the actual vehicle motion. The re-extracted data also tracks the vehicles over a 14% longer distance and adds 23% more vehicles compared to the original NGSIM dataset. As of publication, the re-extracted data from this paper will be released to the research community.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call