Abstract

Algorithms for solving systems of polynomial equations are key components for solving geometry problems in computer vision. Fast and stable polynomial solvers are essential for numerous applications e.g. minimal problems or finding for all stationary points of certain algebraic errors. Recently, full symmetry in the polynomial systems has been utilized to simplify and speed up state-of-the-art polynomial solvers based on Grobner basis method. In this paper, we further explore partial symmetry (i.e. where the symmetry lies in a subset of the variables) in the polynomial systems. We develop novel numerical schemes to utilize such partial symmetry. We then demonstrate the advantage of our schemes in several computer vision problems. In both synthetic and real experiments, we show that utilizing partial symmetry allow us to obtain faster and more accurate polynomial solvers than the general solvers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.