Abstract

We study the spectral and temporal coherence effects in the passage of a Gaussian Schell-model (GSM) scalar, plane-wave pulse train through a slab of nonlinear optical crystal exhibiting second-harmonic generation. We show that due to the nonlinear interaction the temporal and spectral degrees of coherence of the fundamental (F) and second-harmonic (SH) pulse trains at the exit facet may deviate markedly from the GSM and the global degree of coherence of the SH wave generally decreases with increasing incident F beam intensity. In addition, we find that due to the partial coherence of the incident GSM field the transmitted SH wave may show a double-peaked intensity distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.